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1.

(a)

Take x;,, > xy, > 0. Then f is continuous on any interval [z, z,] (1 pt.).
Application of Mean Value Theorem on [x,,z,] yields the existence of ¢y, €
(Zn, Tm) such that

(3 pt.)
Let € > 0. Since (z,) is a Cauchy sequence there exists N such that for all
n,m > N, |z, — xm| < §7. Hence for all such n,m

[f(zn) = f(@m)] < My —zn| <€

This proves that (f(x,) is a Cauchy sequence. (3 pt.).

Since any Cauchy sequence converges, lim f(z,) exists. (1 pt.).

lim,_ o+ f(z) exists if and only if lim,, .~ f(x,) exists for all (z,) with z,, > 0 and
limz, =0. (3 pt.)

Hence by part (a) lim, .o+ f(z) exists. (1 pt.).

For every ¢ > 0 the set [0, ¢] is compact (bounded and closed). (2 pt.).
By a theorem in the book every continuous function on a compact interval is
uniformly continuous. (3 pt.).

A function f : [0,00) — Ris not uniformly continuous if and only if there exists an
€0 > 0 and two sequences (x,,), (yn) € [0,00) such that

‘wn_yn| — 0, but |f(xn)_f(yn)‘ > €

(4 pt.)
Take @, = n,y, = n + 1. Then clearly |z, — y,| — 0. (2 pt.).
Furthermore

Fn) = o)l = I — (k22 =~ 2= | >

(4 pt.)

Thus we may e.g. take €9 = 2 and apply the Sequential Criterion for Nonuniform
Continuity. (2 pt.)

Suppose that f is not uniformly continuous. Then by the above Sequential Crite-
rion for Nonuniform Continuity there exists ¢y > 0 and two sequences (x,,), (yn) €
[0, 00) such that

‘xn_yn| — 0, but |f(xn)_f(yn)‘ > €0

Then both sequences (x,,), (y,) should converge to oo since f is by part (a) uni-
formly continuous on any interval [0, ¢] (4 pt.)

This means that lim f(z,) = lim f(y,) = L where L = lim;_,o f(z). But this
yields a contradiction with |f(x,) — f(yn)| > €0 > 0. (4 pt.)



3. (a) The function g(z) := f(z) — 22 is continuous on [0, 1], while g(0) = f(0) > 0 and
g(1) = £(1) — 1 < 0. (3 pt.)
If g(0) = 0 or g(1) is equal to 0 then we are done (take x =0 or z = 1). (2 pt.)
Else g(0) < 0,¢(1) > 0, and thus we may apply the Intermediate Value Theorem
to g with intermediate value L = 0. This yields the existence of an z € (0, 1) such
that g(z) = 0 or equivalently f(x) = 22. (3 pt.)

(b) g(0) = £(0) — 0 = 0 and g(1) = f(1) — 12 = 0. Furthermore, g is differentiable

(and thus continuous) on [0, 1]. (3 pt.)
Hence we may apply Rolle’s theorem to conclude the existence of an x € (0,1)
such that 0 = ¢'(z) = f'(z) — 2z. (5 pt.)

4. (a) sp(x) = %(1 —z) (2 pt.), and thus s,(z) — s(z) = h;; for z < 1. (2 pt.)

Furthermore for x = 1 we have s,(1) = 0 and thus convergence to s(1) =0 (1 pt.)

1—=x
1+

(—2)"| < (1 —az)z™ <"

|sn(2) = s(z)] = |

whenever z < § < 1. (6 pt.)
Given € < 1 take N > 1< Then for all n > N and for all = € [0,6] we have

Iné
|sn(x) — s(z)| < €, and thus uniform convergence. (2 pt.)

(N.B. An alternative proof is via the Weierstrass M-test: |(—1)"2"(1 — z)| < §™.)

(c) The differential of the function (1 —x)a™ = 2™ — 2" is equal to na" ! — (n+1)z",

and thus the function attains its maximum at x = -2 with value

n+1
n n \" 1
1-— <
( n+1)<n+1) n+1

(5 pt.). Hence convergence is uniform (choose N +1> 1). (2 pt.)

(d) The sequence of absolute values becomes ZZZ:O z"(1—x). ((1 pt.)
Partial sum in this case is s,(2) = (1 —2)3=%" = 1 — 2" for z < 1 while s,(1)
and hence the pointwise limit is the function s(z) = 1,2 < 1 and s(1) = 0. (4

pt.
Since this limit function is not continuous, the convergence is not uniform. (2 pt.

=0

5. For any partition P we have U(f, P) < U(g, P). (4 pt.)
Hence U(f) = infp U(f, P) and U(g) = infp U(g, P) satisfies U(f) < U(g). Further-
more [ f=U(f) and [g=U(g).(6 pt.)
(Of course, same arguments can be given for L(f, P), L(g, P) and L(f), L(g).)



