## Uitwerking Tentamen Analyse 4 november 2013

1. (a) Take $x_{n} \geq x_{m}>0$. Then $f$ is continuous on any interval $\left[x_{m}, x_{n}\right]$ ( $\mathbf{1} \mathbf{p t}$.).

Application of Mean Value Theorem on $\left[x_{m}, x_{n}\right]$ yields the existence of $c_{n m} \in$ $\left(x_{n}, x_{m}\right)$ such that
$\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right| \leq f^{\prime}\left(c_{n m}\right)| | x_{n}-x_{m}|\leq M| x_{n}-x_{m} \mid$
(3 pt.)
Let $\epsilon>0$. Since $\left(x_{n}\right)$ is a Cauchy sequence there exists $N$ such that for all $n, m \geq N,\left|x_{n}-x_{m}\right|<\frac{\epsilon}{M}$. Hence for all such $n, m$
$\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right| \leq M\left|x_{n}-x_{m}\right|<\epsilon$
This proves that $\left(f\left(x_{n}\right)\right.$ is a Cauchy sequence. ( $\left.\mathbf{3} \mathbf{p t}.\right)$.
Since any Cauchy sequence converges, $\lim f\left(x_{n}\right)$ exists. ( $\mathbf{1} \mathbf{~ p t . ) . ~}$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$ exists if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists for all $\left(x_{n}\right)$ with $x_{n}>0$ and $\lim x_{n}=0$. ( $\mathbf{3} \mathbf{~ p t . ) ~}$
Hence by part (a) $\lim _{x \rightarrow 0^{+}} f(x)$ exists. (1 pt.).
2. (a) For every $c>0$ the set $[0, c]$ is compact (bounded and closed). (2 pt.).

By a theorem in the book every continuous function on a compact interval is uniformly continuous. (3 pt.).
(b) A function $f:[0, \infty) \rightarrow \mathbb{R}$ is not uniformly continuous if and only if there exists an $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right),\left(y_{n}\right) \in[0, \infty)$ such that
$\left|x_{n}-y_{n}\right| \rightarrow 0, \quad$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$
(4 pt.)
(c) Take $x_{n}=n, y_{n}=n+\frac{1}{n}$. Then clearly $\left|x_{n}-y_{n}\right| \rightarrow 0$. (2 pt.).

Furthermore
$\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|n^{2}-\left(n+\frac{1}{n}\right)^{2}\right|=\left|-2-\frac{1}{n^{2}}\right| \geq 2$
(4 pt.)
Thus we may e.g. take $\epsilon_{0}=2$ and apply the Sequential Criterion for Nonuniform Continuity. (2 pt.)
(d) Suppose that $f$ is not uniformly continuous. Then by the above Sequential Criterion for Nonuniform Continuity there exists $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right),\left(y_{n}\right) \in$ $[0, \infty)$ such that
$\left|x_{n}-y_{n}\right| \rightarrow 0, \quad$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$
Then both sequences $\left(x_{n}\right),\left(y_{n}\right)$ should converge to $\infty$ since $f$ is by part (a) uniformly continuous on any interval $[0, c]$ ( $\mathbf{4} \mathbf{p t}$.)
This means that $\lim f\left(x_{n}\right)=\lim f\left(y_{n}\right)=L$ where $L=\lim _{x \rightarrow \infty} f(x)$. But this yields a contradiction with $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}>0$. ( 4 pt.)
3. (a) The function $g(x):=f(x)-x^{2}$ is continuous on $[0,1]$, while $g(0)=f(0) \geq 0$ and $g(1)=f(1)-1 \leq 0$. ( $\mathbf{3} \mathbf{p t}$.)
If $g(0)=0$ or $g(1)$ is equal to 0 then we are done (take $x=0$ or $x=1$ ). ( $\mathbf{2} \mathbf{p t}$.)
Else $g(0)<0, g(1)>0$, and thus we may apply the Intermediate Value Theorem to $g$ with intermediate value $L=0$. This yields the existence of an $x \in(0,1)$ such that $g(x)=0$ or equivalently $f(x)=x^{2}$. (3 pt.)
(b) $g(0)=f(0)-0=0$ and $g(1)=f(1)-1^{2}=0$. Furthermore, $g$ is differentiable (and thus continuous) on $[0,1]$. ( $\mathbf{3} \mathbf{~ p t . ) ~}$
Hence we may apply Rolle's theorem to conclude the existence of an $x \in(0,1)$ such that $0=g^{\prime}(x)=f^{\prime}(x)-2 x$. (5 pt.)
4. (a) $s_{n}(x)=\frac{1-(-x)^{n}}{1-(-x)}(1-x)(\mathbf{2} \mathbf{p t}$.$) , and thus s_{n}(x) \rightarrow s(x)=\frac{1-x}{1+x}$ for $x<1$. (2 pt.) Furthermore for $x=1$ we have $s_{n}(1)=0$ and thus convergence to $s(1)=0$ ( $\mathbf{1} \mathbf{p t}$.)
(b)
$\left|s_{n}(x)-s(x)\right|=\left|-\frac{1-x}{1+x}(-x)^{n}\right| \leq(1-x) x^{n} \leq \delta^{n}$
whenever $x \leq \delta<1$. ( $\mathbf{6} \mathbf{p t}$.)
Given $\epsilon<1$ take $N>\frac{\ln \epsilon}{\ln \delta}$. Then for all $n \geq N$ and for all $x \in[0, \delta]$ we have $\left|s_{n}(x)-s(x)\right|<\epsilon$, and thus uniform convergence. (2 pt.)
(N.B. An alternative proof is via the Weierstrass M-test: $\left|(-1)^{n} x^{n}(1-x)\right| \leq \delta^{n}$.)
(c) The differential of the function $(1-x) x^{n}=x^{n}-x^{n+1}$ is equal to $n x^{n-1}-(n+1) x^{n}$, and thus the function attains its maximum at $x=\frac{n}{n+1}$ with value

$$
\left(1-\frac{n}{n+1}\right)\left(\frac{n}{n+1}\right)^{n}<\frac{1}{n+1}
$$

( $\mathbf{5} \mathbf{~ p t . ) . ~ H e n c e ~ c o n v e r g e n c e ~ i s ~ u n i f o r m ~ ( c h o o s e ~} N+1>\frac{1}{\epsilon}$ ). ( $\mathbf{2} \mathbf{~ p t . ) ~}$
(d) The sequence of absolute values becomes $\sum_{n=0}^{\infty} x^{n}(1-x)$. ( $(\mathbf{1} \mathbf{p t}$.

Partial sum in this case is $s_{n}(x)=(1-x) \frac{1-x^{n}}{1-x}=1-x^{n}$ for $x<1$ while $s_{n}(1)=0$, and hence the pointwise limit is the function $s(x)=1, x<1$ and $s(1)=0$. ( $\mathbf{4} \mathbf{~ p t . ) ~}$ Since this limit function is not continuous, the convergence is not uniform. ( $\mathbf{2} \mathbf{~ p t . )}$
5. For any partition $P$ we have $U(f, P) \leq U(g, P)$. (4 pt.)

Hence $U(f)=\inf _{P} U(f, P)$ and $U(g)=\inf _{P} U(g, P)$ satisfies $U(f) \leq U(g)$. Furthermore $\int f=U(f)$ and $\int g=U(g) .(\mathbf{6} \mathbf{p t}$.
(Of course, same arguments can be given for $L(f, P), L(g, P)$ and $L(f), L(g)$.)

