Uitwerking Tentamen Analyse 4 november 2013

1. (a) Take $x_n \ge x_m > 0$. Then f is continuous on any interval $[x_m, x_n]$ (1 pt.). Application of Mean Value Theorem on $[x_m, x_n]$ yields the existence of $c_{nm} \in (x_n, x_m)$ such that

$$|f(x_n) - f(x_m)| \le f'(c_{nm})||x_n - x_m| \le M|x_n - x_m|$$

(3 pt.)

Let $\epsilon > 0$. Since (x_n) is a Cauchy sequence there exists N such that for all $n, m \ge N, |x_n - x_m| < \frac{\epsilon}{M}$. Hence for all such n, m

$$|f(x_n) - f(x_m)| \le M|x_n - x_m| < \epsilon$$

This proves that $(f(x_n)$ is a Cauchy sequence. (3 pt.). Since any Cauchy sequence converges, $\lim f(x_n)$ exists. (1 pt.).

- (b) lim_{x→0+} f(x) exists if and only if lim_{n→∞} f(x_n) exists for all (x_n) with x_n > 0 and lim x_n = 0. (3 pt.) Hence by part (a) lim_{x→0+} f(x) exists. (1 pt.).
- 2. (a) For every c > 0 the set [0, c] is compact (bounded and closed). (2 pt.).
 By a theorem in the book every continuous function on a compact interval is uniformly continuous. (3 pt.).
 - (b) A function $f : [0, \infty) \to \mathbb{R}$ is not uniformly continuous if and only if there exists an $\epsilon_0 > 0$ and two sequences $(x_n), (y_n) \in [0, \infty)$ such that

 $|x_n - y_n| \to 0$, but $|f(x_n) - f(y_n)| \ge \epsilon_0$

(4 pt.)

(c) Take $x_n = n, y_n = n + \frac{1}{n}$. Then clearly $|x_n - y_n| \to 0$. (2 pt.). Furthermore

$$|f(x_n) - f(y_n)| = |n^2 - (n + \frac{1}{n})^2| = |-2 - \frac{1}{n^2}| \ge 2$$

(4 pt.)

Thus we may e.g. take $\epsilon_0 = 2$ and apply the Sequential Criterion for Nonuniform Continuity. (2 pt.)

(d) Suppose that f is *not* uniformly continuous. Then by the above Sequential Criterion for Nonuniform Continuity there exists $\epsilon_0 > 0$ and two sequences $(x_n), (y_n) \in [0, \infty)$ such that

$$|x_n - y_n| \to 0$$
, but $|f(x_n) - f(y_n)| \ge \epsilon_0$

Then both sequences $(x_n), (y_n)$ should converge to ∞ since f is by part (a) uniformly continuous on any interval [0, c] (4 pt.)

This means that $\lim f(x_n) = \lim f(y_n) = L$ where $L = \lim_{x\to\infty} f(x)$. But this yields a contradiction with $|f(x_n) - f(y_n)| \ge \epsilon_0 > 0$. (4 pt.)

- 3. (a) The function $g(x) := f(x) x^2$ is continuous on [0, 1], while $g(0) = f(0) \ge 0$ and $g(1) = f(1) 1 \le 0$. (3 pt.) If g(0) = 0 or g(1) is equal to 0 then we are done (take x = 0 or x = 1). (2 pt.) Else g(0) < 0, g(1) > 0, and thus we may apply the Intermediate Value Theorem to g with intermediate value L = 0. This yields the existence of an $x \in (0, 1)$ such that g(x) = 0 or equivalently $f(x) = x^2$. (3 pt.)
 - (b) g(0) = f(0) 0 = 0 and $g(1) = f(1) 1^2 = 0$. Furthermore, g is differentiable (and thus continuous) on [0, 1]. (3 pt.) Hence we may apply Rolle's theorem to conclude the existence of an $x \in (0, 1)$ such that 0 = g'(x) = f'(x) - 2x. (5 pt.)
- 4. (a) $s_n(x) = \frac{1-(-x)^n}{1-(-x)}(1-x)$ (2 pt.), and thus $s_n(x) \to s(x) = \frac{1-x}{1+x}$ for x < 1. (2 pt.) Furthermore for x = 1 we have $s_n(1) = 0$ and thus convergence to s(1) = 0 (1 pt.)

$$|s_n(x) - s(x)| = |-\frac{1-x}{1+x}(-x)^n| \le (1-x)x^n \le \delta^n$$

whenever $x \leq \delta < 1$. (6 pt.) Given $\epsilon < 1$ take $N > \frac{\ln \epsilon}{\ln \delta}$. Then for all $n \geq N$ and for all $x \in [0, \delta]$ we have $|s_n(x) - s(x)| < \epsilon$, and thus uniform convergence. (2 pt.) (N.B. An alternative proof is via the Weierstrass M-test: $|(-1)^n x^n (1-x)| \leq \delta^n$.)

(c) The differential of the function $(1-x)x^n = x^n - x^{n+1}$ is equal to $nx^{n-1} - (n+1)x^n$, and thus the function attains its maximum at $x = \frac{n}{n+1}$ with value

$$\left(1 - \frac{n}{n+1}\right) \left(\frac{n}{n+1}\right)^n < \frac{1}{n+1}$$

(5 pt.). Hence convergence is uniform (choose $N + 1 > \frac{1}{\epsilon}$). (2 pt.)

- (d) The sequence of absolute values becomes $\sum_{n=0}^{\infty} x^n (1-x)$. ((1 pt.) Partial sum in this case is $s_n(x) = (1-x)\frac{1-x^n}{1-x} = 1-x^n$ for x < 1 while $s_n(1) = 0$, and hence the pointwise limit is the function s(x) = 1, x < 1 and s(1) = 0. (4 pt.) Since this limit function is not continuous, the convergence is *not* uniform. (2 pt.)
- 5. For any partition P we have $U(f, P) \leq U(g, P)$. (4 pt.) Hence $U(f) = \inf_P U(f, P)$ and $U(g) = \inf_P U(g, P)$ satisfies $U(f) \leq U(g)$. Furthermore $\int f = U(f)$ and $\int g = U(g)$.(6 pt.) (Of course, same arguments can be given for L(f, P), L(g, P) and L(f), L(g).)