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1. (a) Take xn ≥ xm > 0. Then f is continuous on any interval [xm, xn] (1 pt.).
Application of Mean Value Theorem on [xm, xn] yields the existence of cnm ∈
(xn, xm) such that

|f(xn)− f(xm)| ≤ f ′(cnm)||xn − xm| ≤M |xn − xm|

(3 pt.)
Let ε > 0. Since (xn) is a Cauchy sequence there exists N such that for all
n,m ≥ N, |xn − xm| < ε

M . Hence for all such n,m

|f(xn)− f(xm)| ≤M |xn − xm| < ε

This proves that (f(xn) is a Cauchy sequence. (3 pt.).
Since any Cauchy sequence converges, lim f(xn) exists. (1 pt.).

(b) limx→0+ f(x) exists if and only if limn→∞ f(xn) exists for all (xn) with xn > 0 and
limxn = 0. (3 pt.)
Hence by part (a) limx→0+ f(x) exists. (1 pt.).

2. (a) For every c > 0 the set [0, c] is compact (bounded and closed). (2 pt.).
By a theorem in the book every continuous function on a compact interval is
uniformly continuous. (3 pt.).

(b) A function f : [0,∞)→ Ris not uniformly continuous if and only if there exists an
ε0 > 0 and two sequences (xn), (yn) ∈ [0,∞) such that

|xn − yn| → 0, but |f(xn)− f(yn)| ≥ ε0

(4 pt.)

(c) Take xn = n, yn = n+ 1
n . Then clearly |xn − yn| → 0. (2 pt.).

Furthermore

|f(xn)− f(yn)| = |n2 − (n+
1
n

)2| = | − 2− 1
n2
| ≥ 2

(4 pt.)
Thus we may e.g. take ε0 = 2 and apply the Sequential Criterion for Nonuniform
Continuity. (2 pt.)

(d) Suppose that f is not uniformly continuous. Then by the above Sequential Crite-
rion for Nonuniform Continuity there exists ε0 > 0 and two sequences (xn), (yn) ∈
[0,∞) such that

|xn − yn| → 0, but |f(xn)− f(yn)| ≥ ε0

Then both sequences (xn), (yn) should converge to ∞ since f is by part (a) uni-
formly continuous on any interval [0, c] (4 pt.)
This means that lim f(xn) = lim f(yn) = L where L = limx→∞ f(x). But this
yields a contradiction with |f(xn)− f(yn)| ≥ ε0 > 0. (4 pt.)
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3. (a) The function g(x) := f(x) − x2 is continuous on [0, 1], while g(0) = f(0) ≥ 0 and
g(1) = f(1)− 1 ≤ 0. (3 pt.)
If g(0) = 0 or g(1) is equal to 0 then we are done (take x = 0 or x = 1). (2 pt.)
Else g(0) < 0, g(1) > 0, and thus we may apply the Intermediate Value Theorem
to g with intermediate value L = 0. This yields the existence of an x ∈ (0, 1) such
that g(x) = 0 or equivalently f(x) = x2. (3 pt.)

(b) g(0) = f(0) − 0 = 0 and g(1) = f(1) − 12 = 0. Furthermore, g is differentiable
(and thus continuous) on [0, 1]. (3 pt.)
Hence we may apply Rolle’s theorem to conclude the existence of an x ∈ (0, 1)
such that 0 = g′(x) = f ′(x)− 2x. (5 pt.)

4. (a) sn(x) = 1−(−x)n

1−(−x) (1− x) (2 pt.), and thus sn(x)→ s(x) = 1−x
1+x for x < 1. (2 pt.)

Furthermore for x = 1 we have sn(1) = 0 and thus convergence to s(1) = 0 (1 pt.)

(b)

|sn(x)− s(x)| = | − 1− x
1 + x

(−x)n| ≤ (1− x)xn ≤ δn

whenever x ≤ δ < 1. (6 pt.)
Given ε < 1 take N > ln ε

ln δ . Then for all n ≥ N and for all x ∈ [0, δ] we have
|sn(x)− s(x)| < ε, and thus uniform convergence. (2 pt.)
(N.B. An alternative proof is via the Weierstrass M-test: |(−1)nxn(1− x)| ≤ δn.)

(c) The differential of the function (1−x)xn = xn−xn+1 is equal to nxn−1−(n+1)xn,
and thus the function attains its maximum at x = n

n+1 with value

(1− n

n+ 1
)
(

n

n+ 1

)n
<

1
n+ 1

(5 pt.). Hence convergence is uniform (choose N + 1 > 1
ε ). (2 pt.)

(d) The sequence of absolute values becomes
∑∞

n=0 x
n(1− x). ((1 pt.)

Partial sum in this case is sn(x) = (1−x)1−xn

1−x = 1−xn for x < 1 while sn(1) = 0,
and hence the pointwise limit is the function s(x) = 1, x < 1 and s(1) = 0. (4 pt.)
Since this limit function is not continuous, the convergence is not uniform. (2 pt.)

5. For any partition P we have U(f, P ) ≤ U(g, P ). (4 pt.)
Hence U(f) = infP U(f, P ) and U(g) = infP U(g, P ) satisfies U(f) ≤ U(g). Further-
more

∫
f = U(f) and

∫
g = U(g).(6 pt.)

(Of course, same arguments can be given for L(f, P ), L(g, P ) and L(f), L(g).)
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